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Abstract

New turbulence and turbulent heat ¯ux models are proposed for capturing ¯ow and thermal ®elds bounded by walls or free

surfaces. The models are constructed using locally de®nable quantities only, without any recourse to topographical parameters. For

the ¯ow ®eld, the proposed model is a cubic nonlinear k±e±A three equation eddy viscosity model. It employs dependence on

Lumley's stress ¯atness parameter A, by solving its modelled transport equation as the third variable. Since A vanishes at two-

component turbulence boundaries, introducing its dependency enables a turbulence model to capture the structure of turbulence

near shear-free surfaces as well as wall boundaries. To close the modelled A equation, an up-to-date second-moment closure is

applied. For the thermal ®eld, an explicit algebraic second-moment closure for turbulent heat ¯ux is proposed. The new aspect of

this heat ¯ux model is the use of nonlinear Reynolds stress terms in the eddy di�usivity tensor. This model complies with the linearity

and independence principles for passive scalar. The proposed models are tested in fully developed plane channel, open channel and

plane Couette±Poiseuille ¯ows at several ¯uid Prandtl numbers. The results show the very encouraging performance of the present

proposals in capturing anisotropic turbulence and thermal ®elds near both wall and shear-free boundaries in the range of

0:0256 Pr6 95. Ó 2000 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

Working ¯uid in industrial machinery is usually bounded
by walls, or in the case of liquid ¯ow, one side of the ¯ow may
be open to gas. It is thus essential to estimate the ¯ow and
thermal quantities near the boundaries for designing ¯uid
machines. To meet this, computational ¯uid dynamics has
become an important tool and use of a turbulence model is
now well established since most practical ¯ows are turbulent.

For turbulent ¯ow ®eld, the most widely used turbulence
model in industry is a linear eddy viscosity model (EVM)
because of its numerical stability and low cost required.
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Notation

aij anisotropic stress �� uiuj=k ÿ �2=3�dij�
A Lumley's stress ¯atness parameter
As Lumley's stress ¯atness parameter, processed

from the calculated strain ®eld
A2 the second invariant of anisotropic stress
k; k� turbulence energy (k=u2

s)
l turbulent length scale �� k1:5=e�
Pr Prandtl number
Re Reynolds number �� Ubd=m�
Rt; eRt turbulent Reynolds number

�� k2=�me�; k2=�m~e��
Sij; ~S � Ui;j � Uj;i; s

���������������
SijSij=2

p
ui; Ui ¯uctuating and mean velocity components
us friction velocity

u0�; v0�; w0�
�����
u2

p
=us;

����
v2

p
=us;

������
w2

p
=us

uiuj Reynolds stress
Ub bulk velocity

uih; uih
�

turbulent heat ¯ux �uih=�usHs��
xi coordinate direction
y� normalized wall normal distance �� usy=m�
dij Kronecker's delta
e; ~e; e� dissipation rate of k, eÿ 2m

���
k
p

;k

���
k
p

;k ; me=u4
s

H;Hs;H
�

mean temperature, friction temperature,
H=Hs

m; mt kinematic viscosity, kinematic eddy viscosity
s turbulent time scale �� k=~e�
Xij; ~X � Ui;j ÿ Uj;i; s

�����������������
XijXij=2

p
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However, for capturing anisotropic stress ®elds, which a�ect
the mean ¯ow ®elds quite signi®cantly, nonlinear terms are
essential in the constitutive equation of an EVM. Most of the
nonlinear EVMs have thus employed up to quadratic products
of mean velocity gradient tensors (e.g. Speziale, 1987; Nisizima
and Yoshizawa, 1987; Rubinstein and Barton, 1990; Myong
and Kasagi, 1990). Several workers, however, have shown that
cubic and even higher order terms appear in transforming an
algebraic second-moment model to an explicit nonlinear EVM
(e.g. Pope, 1975; Horiuti, 1990; Gatski and Speziale, 1993).
Craft et al. (1993, 1996) pointed out that at least cubic terms
were necessary to capture stream-line curvature (including
swirling ¯ows) e�ects in turbulent ¯ows. Although their cubic
nonlinear k±e model improved predictions of such ¯ow ®elds
including impinging jets, it still predicted levels of the turbu-
lence intensities with much too little di�erence among com-
ponents in the bu�er region of a boundary layer. They thus
extended the model to a three equation nonlinear EVM by
introducing an additional transport equation for the second
anisotropic stress invariant, A2 � aijaji (Suga, 1995; Craft
et al., 1995, 1997). Since modern second-moment closures
make some of their coe�cients dependent on the stress in-
variants (e.g. Lumley, 1978; Launder and Tselepidakis, 1993;
Craft and Launder, 1996), they employed a similar approach.
Their three equation nonlinear eddy viscosity model, the CLS
model hereafter, showed very encouraging results for predict-
ing a wide range of wall-bounded ¯ows including ¯ows asso-
ciated with turbomachinery (Chen et al., 1998a,b) and ¯ows
with shock/boundary layer interaction (Barakos and Drikakis,
1997).

However, on a shear-free boundary, such as a free surface
and a moving shear-free wall of the Couette±Poiseuille ¯ow,
the usual linear or nonlinear stress±strain relations always
return an isotropic stress ®eld corresponding to the vanishing
of the velocity gradients. Since the stress ®eld is signi®cantly
anisotropic and reaches two-component turbulence at a

shear-free boundary, capturing this anisotropic turbulence is
crucial if the model is used to predict scalar di�usion pro-
cesses near the boundary. Moreover, as Fig. 1(a) illustrates,
when the eddy viscosity, mt, is estimated as ÿuv=U; y , the
blocking e�ect on the normal ¯uctuating velocity results in
signi®cant damping on mt near a free surface �y � d� as well.
No such an e�ect is, however, detected near the centerline of
the plane channels. (Here, d represents the channel half-width
of a plane channel, the channel width of the plane Couette±
Poiseuille ¯ow, or the channel depth of an open channel.)
Modelling this damping e�ect is generally di�cult since local
invariant parameters such as the turbulent Reynolds number
do not vanish on free surfaces (Fig. 1(b)). Therefore, some ad
hoc approaches have been proposed to treat free surface
turbulent ¯ows. Rodi (1980) corrected the length-scale near
the surface through a modi®cation to the boundary condition
of e using the distance from the surface. Celik and Rodi
(1984) introduced a v2-damping function into the coe�cient
of the eddy viscosity: cl with the aid of an algebraic second-
moment closure for v2.

Although as in Fig. 1(c), A2 increases toward 2
3

near a shear-
free boundary, it is still hard to characterize shear-free tur-
bulence with its behaviour. Thus, the CLS model also keeps
the inherent weaknesses of the eddy viscosity modelling. Now,
the presently focused parameter is Lumley's stress ¯atness
parameter: A � 1ÿ 9

8
�A2 ÿ A3�; �A3 � aijajkaki� (Lumley, 1978).

Since it always vanishes in two-component turbulence as
shown in Fig. 1(d), this feature is believed to be very useful to
model turbulence near shear-free boundaries.

For capturing turbulence near walls and shear-free
boundaries, it has been decided in the present study to solve a
transport equation for A as the third variable to be coupled
with the cubic nonlinear k±e EVM. The present paper thus
describes the derivation and the modelling strategy of the
transport equation of A as well as the inclusion of its depen-
dency in the cubic stress±strain relation.

Fig. 1. Distributions of turbulent quantities: (a) eddy viscosity; (b) turbulent Reynolds number; (c) second stress invariant; (d) stress ¯atness pa-

rameter; � � �: Open-channel, Nezu and Rodi (1986); � � � � � � � � � � � �: Open-channel, (b) Handler et al. (1993), (c)(d) Lombardi et al. (1996); ÿ � ÿ � ÿ:

Couette±Poiseuille, Kuroda et al. (1995); ÐÐ: Channel at Re � 2800, Kim et al. (1987); ÿÿÿ: Channel at Re � 6875, Kim (1990).
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For turbulent thermal ®elds, algebraic expressions for tur-
bulent heat ¯ux have been widely used in engineering appli-
cations since they provide mean wall heat transfer rates at least
with moderate satisfaction despite their simplicity. The most
widely used algebraic approach is the eddy di�usivity model-
ling which employs some prescribed turbulent Prandtl number.
However, in the case that individual normal stresses are rea-
sonably predicted as in the present study, use of the Daly and
Harlow (1970) generalized gradient-di�usion hypothesis
(GGDH) arguably provides a more secure route for predicting
the heat ¯ux (e.g. Launder, 1988). The more elaborate but
reliable algebraic approach may be the algebraic second-
moment closure (Launder, 1975). Traditional implicit models
derived from truncation of the convection and di�usion terms
of the transport equation, however, sometimes lead to a sti�
equation set that causes severe convergence di�culties. To
avoid this sti�ness problem, several explicit approaches have
been recently proposed by inverting the matrix of the implicit
equation set (Rogers et al., 1989; So and Sommer, 1995; Abe
et al., 1996; Rhee and Sung, 1997).

Although many of these explicit algebraic models
showed encouraging results, their predictive accuracy of the
streamwise heat ¯ux has a quite wide margin to be im-
proved and some of them violate the linearity and inde-
pendence principles set forth by Pope (1983). To satisfy
these principles in forced convection regimes, it is required
not to use coe�cients dependent on turbulent scalar vari-
ables such as the temperature variance. Moreover, the
model validations have usually been made against wall
bounded ¯ows, and thus their performance near shear-free
interfaces is unknown.

Therefore, the present study focuses on the explicit ap-
proach of the algebraic second-moment closure for heat ¯ux.
In the derivation of the heat ¯ux equations, the nonlinear
stress±strain relation is extensively adapted and the e�ect of A
is also introduced. The present heat ¯ux model is thus designed
to be applied to both wall and shear-free boundaries. The
linearity and independence principles are also considered in the
present model.

2. The proposed model for ¯ow ®elds

2.1. The constitutive equation for uiuj

The nonlinear constitutive relation used in this study is the
cubic model of the CLS model.

aij � uiuj=k ÿ 2
3
dij

� ÿ clsSij � c1s
2�SikSkj ÿ 1

3
SklSkldij�

� c2s
2�XikSkj � XjkSki� � c3s

2�XikXjk ÿ 1
3
XlkXlkdij�

� c4s
3�SkiXlj � SkjXli�Skl � c5s

3�XilXlmSmj

� SilXlmXmj ÿ 2
3
SlmXmnXnldij� � c6s

3SijSklSkl

� c7s
3SijXklXkl � caAij; �1�

where the last term caAij is an additional term introduced in
this study to capture shear-free turbulence described later. The
damping function of the eddy viscosity near a boundary may
be divided into some parts corresponding to the factors which
a�ect the eddy viscosity. Since A decreases near both wall and
shear-free boundaries as mt�� clks� does (see Fig. 1(a),(d)), the
primary damping e�ect for cl can be expected to come from a
function of A. However, the pro®le of A is a�ected by the
Reynolds number, so some Rt e�ect may be still necessary in
the damping. Strain dependency in cl is also required to keep
the Reynolds stresses realizable at high strain rate cases since
cl appears in the linear part of Eq. (1). Consequently, A, Rt

and the strain invariant are considered as the damping factors
in the present study. Accordingly, the coe�cient cl may be
expressed as:

cl � 0:09clA
clRt

clS
: �2�

By referring to a set of DNS data and considering the theo-
retical boundary limiting behaviour of mt, the sub-coe�cients
clA

, clRt
and clS

are modelled as:

clA
� min�1:05; 1:2 1f ÿ exp � ÿ Aÿ A=0:6� �a�g
� 0:18 1f ÿ exp � ÿ 10A�g1=2�; �3�

clRt
� 1� 2A exp�ÿR2

t =8100�; �4�
clS
� min�1; 1:2=�1� 0:06g��: �5�

Note that this empirical coe�cient set is one of those which
reproduce the DNS pro®les with reasonably simple functional
forms. The functions appearing in the coe�cients are listed in
Table 1.

The additional term Aij is

Aij � c0as
2�

������
Ak
p

; i

������
Ak
p

; j ÿ 1
3
dij

������
Ak
p

; k

������
Ak
p

; k�: �6�

This term is designed to satisfy the limiting values at a shear-
free boundary:

a11�� caA11� � a33 � 1
3
; a22�� caA22� � ÿ2

3
:

Here, the index ``2'' denotes the direction normal to the
boundary. Thus, the inclusion of this term enables an EVM to
capture anisotropy of shear-free turbulence.

Corresponding to these modi®cations, the coe�cients and
functions in the cubic stress±strain relation: Eq. (1) are slightly
modi®ed from those of the CLS model as given in Table 1.

Table 1

The empirical coe�cients in the cubic EVM

c1 � ÿ0:05fq c2 � 0:11fq c3 � 0:42fq

~S
~S � ~X

c4 � ÿ0:8fc c5 � 0 c6 � ÿ0:5fc c7 � 0:5fc

g � max�~S; ~X�rg a � 1� 2:6 min�1;Rt=200� b � min�10;max�0; ~S ÿ 5��
fq �

2=3r2
g�1ÿ fa�

�1� 1:8g� 1� 0:0086g2� �1=2
fc �

�2=3�r3
g

�1� 1:8g��1� 0:45g2:5� rg � 1� 0:9f1� 0:4b exp�ÿ Rt

5
�1=4g

� expfÿ� A
0:7
�2g

ca � ÿ�8=3�1=2fa=

f1� 2�AijAij�1=2g
c0a � 1=f1ÿexp�ÿ eRtg=30� fa � expfÿ�~S=2:2�2g
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2.2. Modelling the transport equations

Deriving the exact transport equation for A is straightfor-
ward from its de®nition.

DA
Dt
� ÿ 9

8k
3

2
A3Dkk � 2aijDij ÿ 3ajkakiDij

� �
|�����������������������������������{z�����������������������������������}

DA

ÿ 9

8k
3

2
A3Pkk � 2aijPij ÿ 3ajkakiPij

� �
|��������������������������������{z��������������������������������}

PA

ÿ 9

8k
3

2
A3Pkk � 2aijPij ÿ 3ajkakiPij

� �
|�����������������������������������{z�����������������������������������}

PA

� 9

8k
3

2
A3ekk � 2aijeij ÿ 3ajkakieij

� �
|��������������������������������{z��������������������������������}

eA

; �7�

where Dij; Pij;Pij and eij are, respectively, the di�usive trans-
port, shear generation, pressure correlation, and dissipation
rate of uiuj. Amongst them, the shear generation term:
Pij � ÿ�uiukUj;k � ujukUi;k�, needs no further approximation
while in the present study, the recent second moment model-
ling is applied to the other terms.

Following Craft and Launder (1996) (the CL model here-
after), Pij is divided into two processes as:

Pij � /ij �
1

2
Pkk

uiuj

k
; �8�

where the pressure strain term is split into two parts:
/ij � /ij1 � /ij2. Then, the cubic pressure strain model devel-
oped and widely tested at UMIST (see Craft and Launder,
1996) is adopted for /ij1 and /ij2. After moderate algebra, the
expression for the joint process of PA �PA reduces to:

PA �PA � 9~e
8k
� ec1

n
� fA2��2A2 ÿ 3A3� � ec1 c01 2A3

ÿ ÿ 0:5A2
2

�o
� A

k
0:45c02aijPij

� ÿ �0:6� 0:3c02�Pkk

	
: �9�

Interestingly, the resultant form is considerably simple even
though the cubic pressure strain model is adopted. Note that
the terms including the second term in the right-hand side of
Eq. (8) vanish in the algebraic process. Through the extensive
test using the terms with c02, we have found that their e�ect is
fairly small in the present work and thus currently c02 � 0 is
adopted. The coe�cients and functions are basically the same
as those of the CL model though minor retuning is made for
this study as listed in Table 2. The functions fA and fA2 in
Table 2 use As that is another stress ¯atness parameter simply
processed from the calculated stress ®eld. The use of As instead
of A has been found to be better in the present model. Since
PA �PA is the main source term of the A equation, it is de-
sirable to have reasonable strain sensitivity in it. Furthermore,
in the present modelling, A2 is rede®ned as:

A2 � A3 � 8
9
�1ÿ A� �10�

using A3 and A obtainable from the stress ®eld and the
transport equation, respectively. This A2 includes some trans-
port e�ect and thus contributes to give smooth behaviour of
PA �PA.

The CL model introduced a new eij form complying with
the shear-free limit as well as the wall limit (Launder and
Reynolds, 1983). After full consideration of their form, it has
been found that the truncated form:

eij � 1� ÿ fe� e0ij
�
� e00ij

�
=D� 2

3
feedij �11�

might be enough in the present practice, where

e0ij � 2mf 0e k1=2
;m k1=2

;i
ujum

k

��
� k1=2

; j
uium

k

�
� 2mf 0e k1=2

;k k1=2
;m

ukum

k
dij � uiuj

k
e

�
;

e00ij � e 2
ukul

k
dA

k dA
l dij

�
ÿ uiul

k
dA

j dA
l ÿ

ujul

k
dA

i dA
l

�
fR;

D � e0kk � e00kk

2e
:

Note that this form satis®es at least the wall limit. The e0ij term
follows the CLS model while the e0ij term is introduced after the
CL model with the inhomogeneity indicators:

di � Ni

0:5� NkNk� �1=2
; dA

i �
NA

i

0:5� N A
k NA

k� �1=2
;

Ni � l;i; N A
i � lA1=2

ÿ �
;i;

where l � k1:5=e. Thus, eA reduces to:

eA �ÿ 9

8k
�3A3 ÿ 2feA2�e� 1ÿ fe� �

D
f ÿ 3A3e

�

� �16
3
ÿ 12A2�mf 0e aijk

1=2
;i k1=2

; j ÿ 4�A2 � A3�mf 0e k1=2
;k k1=2

;k

ÿfRe��3A2 � 8
3
�aij dA

i dA
j � �4A2 ÿ 2A3� dA

k dA
k �g
�
; �12�

D � 1� 5f 0e m
e
�aijk

1=2
;i k1=2

; j � 2
3
k1=2
;k k1=2

;k � � 2fR�aij dA
i dA

j � 2
3

dA
k dA

k �:
The empirical functions used are listed in Table 2. Note that
those functions follow essentially the CLS and the CL models.

When the GGDH di�usion model of Daly and Harlow
(1970) is applied to Dij, the DA term reduces to:

DA � mdkl

��
� csukul

k
e

�
A;l

�
;k

� 1

k
mdkl

�
� csukul

k
e

�
k;kA;l� � k;lA;k�

ÿ 9

8
mdkl

�
� csukul

k
e

�
6aijajm;kami;l

ÿ ÿ 2aij;kaij;l

�
: �13�

Table 2

The coe�cients in the A equation

~c1 � 3:1 min�A2; 0:5�fAfRt c01 � 1:1 c02 � 0

fRt
� min Rt=160; 1� � fA2 � A3

s fR � 1ÿ A� �min �Rt=80�2; 1:0
h i

fA � As=14� �1=2; As6 0:05 fe � A=0:151=2; A6 0:15 f 0e � 1ÿ exp ÿRt=5� �f g1=2

� As=0:71=2; 0:05 < As < 0:7 � A1=2; 0:15 < A
� A1=2

s , � As P 0:7
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Although no further approximation may be needed for this
expression, it has been found that the turbulent part of the
non-di�usive elements of the above form sometimes lead to an
unstable solution. The following truncated form is thus used
with cs � 0:22.

DA � mdkl

��
� csukul

k
e

�
A;l

�
;k

� mdkl

k
k;kA;l� � k;lA;k� ÿ 9

8
mdkl 6aijajm;kami;l

ÿ ÿ 2aij;kaij;l

�
:

�14�
For the k and ~e equations, the modelled equation set of the
CLS model is used with some minor modi®cations following
the CL model. They are: (1) the use of the pressure di�usion
term in the k equation, and (2) the inclusion of an extra term in
the ~e equation for a shear-free boundary. The detailed equa-
tion set is attached in Appendix A.

3. The proposed model for scalar ®elds

3.1. Algebraic turbulent heat ¯ux modelling

With the assumption that the convection and the di�usion
terms of uih are negligible compared with the other terms, the
uih transport equation reduces to

0 � ÿuiuj H; j ÿ ujh U i;j � /ih1 � /ih2: �15�
For the pressure-scalar correlation terms /ih1 and /ih2, many
simple and complicated proposals can be found in the litera-
ture (Launder, 1976; Craft and Launder, 1991; etc.). Since all
of the forms, however, may be expressed as:

/ih1 � /ih2 � c0huih�M 0
ijujh� N 0ijH; j; �16�

introduction of Eq. (16) into Eq. (15) yields the following
general algebraic expression:

uih � Mijujh� NijH; j; �17�
where M's and N's are tensors consisting of the Reynolds
stress tensor and mean velocity gradient tensors: Sij and Xij.
Eq. (17) implicitly includes the heat ¯ux tensor on both the
left- and right-hand sides and this sometimes makes numerical
solutions unstable.

Eq. (17) may be modi®ed to

dij

ÿ ÿMij

�
ujh � NijH; j: �18�

The inversion of this matrix equation gives an explicit alge-
braic form. The resultant form may be written using k, s and a
coe�cient ch as:

uih � ÿchksOijH; j; �19�
where Oij also consists of the Reynolds stress and mean ve-
locity gradient tensors. This form is essentially the gradient
di�usion model. (This approach was originally presented by
Rogers et al. (1989).) In the present study, the eddy di�usivity
tensor Oij is split into rij and aij which are, respectively, the
symmetric and the asymmetric parts.

uih � ÿchks rij

ÿ � aij

�
H; j: �20�

Here, it is assumed that the Reynolds stresses can be expanded
in terms of the mean velocity gradient tensors. The most
general expansion originally used in the nonlinear eddy vis-
cosity approach of Pope (1975) allows one to express aij as:

aij �
X10

k�1

GkT k
ij ; �21�

where T k
ij is a symmetric tensor composed of Sij and Xij and the

coe�cients Gk's include invariant functions. Note that the
right-hand side of the above equation has 10 elements and no
further independent element is necessary by the Cayley±
Hamilton theorem. By the use of this equation, the Reynolds
stress tensor in rij is replaced and the resultant form of rij is
written in a series of tensors composed of Sij and Xij. It is in
fact the same as Eq. (21) with its own series of the coe�cients
Gk. Since the higher order products: ailalj and ailalkakj, etc.,
may be also written in the same form as Eq. (21), T k

ij can be
expressed with a series of products of the Reynolds stress
tensor. However, the higher order products than the quadratic
order may be rewritten with lower order terms by the Cayley±
Hamilton theorem and thus the resultant generally expanded
form for rij is simply

rij � c0r0dij � c0r1aij � c0r2ailalj;

or

rij � cr0dij � cr1uiuj=k � cr2uiul uluj=k2: �22�
In this form, the term cr0dij corresponds to the model with a
turbulent Prandtl number while cr1uiuj=k corresponds to the
GGDH model. Eq. (22) further includes the quadratic term
and thus it is similar to the form previously discussed by Abe
and Suga (1998). Since a weak contribution of asymmetric
terms is considered to be useful, the following form is con-
sidered in the present study though the most general asym-
metric form includes much more terms.

aij � ca0sXij � ca1s Xiluluj=k
ÿ � Xljuiul=k

�
: �23�

3.2. Optimization of the model coe�cients

In the modelling process for the coe�cients, the boundary
limiting behaviour of turbulent quantities is considered. With
the basic analyses as in Appendix B, heat ¯ux components
behave as

uh / O�y2�; vh / O�y3� : constant wall temperature; �24�
uh / O�y1�; vh / O�y2� : constant wall heat flux; �25�
uh / O�y0�; vh / O�y1� : near free-surface: �26�
Now, two-dimensional ®eld is considered for simplicity. The
present model expression, Eqs. (20)±(23), in two-dimensional
®elds gives

uh � ÿchksfr11H;1 � �r12 � a12�H;2g;
vh � ÿchksf�r12 ÿ a12�H;1 � r22H;2g;

�27�

and each tensor component is expressed as

r11 � cr0 � cr1u2=k � cr2�u2
2 � uv2�=k2;

r22 � cr0 � cr1v2=k � cr2�uv2 � v2
2�=k2;

r12 � cr1uv=k � cr2uv�u2 � v2�=k2;

a12 � ca0sX12 � ca1sX12�v2=k � u2=k�;

�28�

where the indexes ``1'' and ``2'' denote the streamwise direction
and the direction normal to the boundary, respectively. Con-
sidering the above algebraic expressions, the requirements for
the model coe�cients are found as follows. Firstly, the con-
tribution from the asymmetric tensor aij is assumed to be
small. Then, due to the well-known anomaly of the model with
a turbulent Prandtl number, which hardly predicts the
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streamwise heat ¯ux, the corresponding coe�cient is set at zero
cr0 � 0. In the case of a fully developed plane channel ¯ow
with di�erent constant wall temperatures, the streamwise
temperature gradient vanishes. In this particular condition,
Eqs. (27) and (28) give the following condition for satisfying
the requirement of Eq. (24).

ch�cr1 � cr2� / O�yÿ1�: �29�
According to the conclusion of Abe and Suga (1998), the
model performance should be expected mainly from the qua-
dratic term in rij but the e�ect of the linear term is important
for low Pr cases and near shear-free boundaries. Thus, the
coe�cient cr1 needs to be weighted near a free surface. To meet
the requirement of Eq. (26), the following condition may be
derived for a fully developed open channel ¯ow.

chcr1 / O�yÿ1�: �30�
In the present study, the following conditions are chosen to
satisfy Eqs. (29) and (30) though there are many other options.

ch / O�yÿ1�; cr1; cr2 / O�y0�: �31�
These conditions also enable the model to satisfy Eq. (25)
when a fully developed plane channel ¯ow with constant wall
heat ¯ux is considered.

Considering Eq. (31) as well as the conclusion of Abe and
Suga (1998), we have performed numerical experiments using
the DNS and LES databases. The resultant set of optimized
model coe�cients is

ch � 0:4

1ÿ exp�ÿ�A=0:05�2�
n o1=4

;

cr0 � 0;

cr1 � 0:15fb � 0:1fPr;

cr2 � 1ÿ fb ÿ fPr;

ca0 � 0;

ca1 � 1� ÿ fPr� ÿ0:5An

1� n2

(
ÿ 0:02

A� n� 0:2� �2 exp
h
ÿ n=2:2� �2

i)
;

fb � �1ÿ fPr�2 exp�ÿnÿ �A=0:6�2�;
fPr � 1

1� Pr=0:085� �1:5 ;

n � ~S: �32�
The shear-free e�ects and Prandtl number e�ects are included
by employing the weighting functions fb and fPr, respectively.
Due to the inclusion of A dependency, fb is especially sensi-
tized to the two-component turbulence. This set of coe�cients
satis®es the linearity and independence principles for passive
scalar due to the elimination of scalar ®eld variables. (Cur-
rently, the term with ca0 is not used in the present model.)

The proposed set of coe�cients is also e�ective if an an-
isotropic turbulent ¯ow ®eld is well captured by a full second
moment closure or another nonlinear EVM. However, when
the distribution of A is not reasonably given, particularly near
a boundary, the model performance is not fully expected since
some of the model coe�cients utilize the boundary limiting
behaviour of A: A / O�y2�. Thus, another set of coe�cients is
given in Appendix C for a turbulence model which does not
provide such a boundary limiting behaviour of A. Note that
the coe�cients listed in Appendix C are only e�ective for wall
shear ¯ow cases not for shear-free boundary layers because the
dependency on A is excluded from them.

4. Applications and discussions

In order to validate their performance in shear-free turbu-
lence, the proposed models have been tested in a fully devel-
oped open channel ¯ow and a plane Couette±Poiseuille ¯ow
without shear on the moving wall, as well as for plane channel
¯ows. The parabolic computations have been performed using
the PASSABLE code (Leschziner, 1982). The computational
domain extends from the symmetry plane or the shear-free
boundary to the wall with 100 grid nodes distributed nonuni-
formly with a concentration near the boundaries. The grid
distribution was adjusted for each test case to ensure grid in-
dependency of the solution. Also, the solutions were con®rmed
to be grid independent by comparing with results on much
®ner grids. The mean momentum equation coupled with the k,
e and A transport equations for turbulence has been computed.
With the resultant ¯ow quantities, the mean temperature
transport equation has been computed with the present alge-
braic heat ¯ux model.

4.1. Flow ®eld predictions

The speci®c boundary conditions used for shear free regions
�y � d� are listed in Table 3. Fig. 2 shows satisfactory agree-
ment between the predicted mean velocity pro®les and the
DNS data. (Note that the DNS of the plane Couette±Poiseuille
¯ow by Kuroda et al., 1995 is not perfectly shear-free at the
moving wall though the shear is very small.) The predicted
turbulent shear stress distributions agree quite well with the
DNS results as shown in Fig. 3. Fig. 4 compares the predicted
root mean square values of the Reynolds normal stresses with
the DNS results. The stress pro®le in the shear-free region is
very di�erent for the three test cases though the strain ®eld is
nearly the same in all cases. The agreement between the pre-
diction and the DNS data is fairly satisfactory for all com-
ponents in each ¯ow. Particularly, the present model
successfully demonstrates its ability to capture the character-
istic behaviour of the Reynolds normal stresses near the free
surface where only the component normal to the surface
vanishes. This con®rms that the proposed stress±strain relation
is also e�ective for shear-free turbulence.

Fig. 5 compares the predicted stress ¯atness parameters
with the DNS results. Although the agreement is generally
satisfactory, values in the core regions are underpredicted. This
is partly because of the truncation made in Eq. (14). (Adopting
Eq. (13) made the agreement closer.) According to the pre-
dicted behaviour of A which produces the primary damping
e�ect on mt in the present model, the predicted eddy viscosity
behaves reasonably near both wall and shear-free boundaries
as shown in Fig. 6. (Obviously, further re®nements are nec-
essary.)

The predicted dissipation rate is also satisfactory as shown
in Fig. 7 which compares the prediction and the DNS data of
Kuroda et al. (1995). The agreement near both shear and
shear free walls implies that the present e equation is fairly
successful in capturing the dissipation rate in two-component
turbulence.

Table 3

The ¯ow ®eld boundary conditions used at y � d

Flow case U k ~e A

Plane channel U; y � 0 k; y � 0 ~e; y � 0 A; y � 0

Open channel U; y � 0 k; y � 0 ~e; y � 0 A � 0

Couette±Poiseuille U; y � 0 k � 0 ~e � 0 A � 0
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4.2. Thermal ®eld predictions

Fig. 8 shows the comparison between the present predic-
tions and the DNS and the LES results of fully developed
thermal ®elds of plane channels. The ¯uid Prandtl number
ranges from 0.025 to 7.0. A constant wall temperature con-
dition and internal heat source are imposed for all cases ex-
cept for the case of Pr � 0:025 which assumes constant wall
heat ¯ux. These boundary conditions are consistent with
those of the simulations. Generally, excellent agreement can
be seen in the distributions of the normalized mean temper-
ature H and heat ¯ux components, uh and vh. Although the
presently predicted uh does not perfectly accord with the data
in the core region around y=d � 0:2, in the higher Pr cases,
the general pro®les and the peak values are well captured.
This is due to the inclusion of quadratic terms in the heat ¯ux
model as well as the reasonable prediction of the Reynolds
stresses (shown in Fig. 4). An improvement to the underpre-
diction around y=d � 0:2 would be made by modifying the
asymmetric tensor aij since linear and quadratic terms of rij

produce larger ratio of vh=uh in the core region at high Pr
number (see Abe and Suga, 1998). Note that no previously
proposed explicit algebraic model could capture this peak
values with comparable accuracy to the present results, as
shown in Fig. 9.

Similar tendencies can be seen in Fig. 10 which compares
the results of the thermal ®elds with the ``wall transfer''
thermal boundary condition of Rogers et al. (1989). In this
condition, there is a temperature di�erence between the two
walls facing each other. The agreement is also generally suf-
®cient.

In Fig. 11, the predicted results by the LES and present
computations of a fully developed open channel water ¯ow are
compared. In the computation, constant heat ¯ux conditions
are imposed on both the wall and the free surface. Reasonably

Fig. 4. Turbulent intensities; key as Fig. 2.

Fig. 5. Stress ¯atness parameter distributions; key as Fig. 2.

Fig. 3. Turbulent shear stress distributions; key as Fig. 2.

Fig. 2. Mean velocity distributions; symbols: DNS, channel: Kim et al.

(1987), Kim (1990); Couette±Poiseuille: Kuroda et al. (1995); open

channel: Lombardi et al. (1996); lines: present model.
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satisfactory agreement can be seen in the mean temperature
and vh distributions. The present heat ¯ux model reproduces
generally a reasonable distribution of uh of the LES though the
agreement is not perfect. In fact, the present model does give a
good level of uh near the shear-free surface which has been
very di�cult in principle to predict with previous proposals in
the literature. This success comes from a combination of the
linear terms in Eq. (22) and the satisfactory ¯ow ®eld predic-

tion given by the k±e±A model. The poor agreement in uh near
the free surface, however, partly corresponds to the poor
predictive accuracy of A there. Due to the slight overprediction
of A in the vicinity of the free surface (see Fig. 5), the designed
performance of the weighting function fb for free surfaces is
not fully obtained.

Fig. 11 also compares the results of the Couette±Poiseuille
¯ow with a moving shear-free wall. The thermally imposed
boundary condition is the ``wall transfer'' condition. Although
the tendency in the mean temperature is similar to that of the
open channel, a clear di�erence can be seen in the behaviour
of uh near the shear-free boundaries �y=d � 1�. (While they
look similar to each other, the limiting behaviour of the pre-
dicted vh near shear-free boundaries is also di�erent as dis-
cussed in the former section.) The present model does
successfully predict this discrepancy though further re®ne-
ments seem to be needed.

Fig. 12 compares the mean temperature distributions of the
present heat ¯ux model and the experiments of Neumann
(1968) for an engineering-oil ¯ow where Pr � 95. The experi-

mental correlation proposed by Kader (1981) is also plotted in
the ®gure for comparison. The presented agreement is satis-
factory and thus it can be said that the present model is ap-
plicable to Prandtl numbers at least up to the above value.

Fig. 8. Turbulent thermal ®elds in plane channels with internal heat

source at Re � 2800; ÐÐÐ: present model; symbols: DNS/LES,

Pr � 7: Abe and Suga (1998), Pr � 2; 0:1: Kim and Moin (1989),

Pr � 0:71: Horiuti (1993), Pr � 0:025, (constant wall heat ¯ux condi-

tion at Re � 2280): Kasagi and Ohtsubo (1993).

Fig. 9. Comparison in the predicted streamwise turbulent heat ¯ux in

a plane channel at Re � 2800, Pr � 0:71.

Fig. 6. Eddy viscosity distributions; symbols: data as in Fig. 1(a); lines:

present model.

Fig. 7. Turbulent dissipation rate in the Couette±Poiseuille ¯ow; key

as Fig. 2.
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5. Concluding remarks

This paper has presented the development of a new cubic
nonlinear k±e±A three equation EVM and a new explicit al-
gebraic scalar-¯ux model for passive scalar. They are designed
to handle anisotropic turbulence and heat transfer phenomena,
especially that near a two-component turbulence boundary.
The features that distinguish the present work from the pre-
vious contributions are
1. the introduction of the transport e�ects of the stress ¯atness

parameter, A, which enables the nonlinear EVM to capture
the characteristics of two-component turbulence and makes
the model free from topography;

2. the closure of the transport equation of A using the latest
second-moment closure; and

3. the derivation of an explicit algebraic heat ¯ux model that
includes contribution from the quadratic products of the
Reynolds stress tensor.

Since A always vanishes at two-component turbulence
boundaries, the introduction of its dependence successfully
enables the nonlinear EVM and the heat ¯ux model to capture
the characteristics of wall and shear-free turbulence.

The application results show the models' excellent perfor-
mance to predict anisotropic turbulent ¯ow and thermal ®elds

in the range of 0:0256 Pr6 95. Moderate defects in the mod-
els, however, have been pointed out. They are the underpre-
diction of A and the streamwise heat ¯ux in the core region of
a channel, and the overprediction of the streamwise heat ¯ux

Fig. 11. Turbulent thermal ®elds in an open channel, O-C, (Re � 2800)

and Couette±Poiseuille, C±P, (Re � 5180) ¯ows; ÐÐ: present model;

symbols: Abe and Suga (1998).

Fig. 12. Mean temperature distribution in an engineering oil ¯ow

(Pr � 95) at Re � 7000; � � �: experiments, Neumann (1968); ÐÐ:

present model; . . . . . .: experimental correlation, Kader (1981).

Fig. 10. Turbulent thermal ®elds in plane channels with wall transfer

at Re � 2800; ÐÐ: present model; symbols: DNS/LES,

(Pr � 7; 2; 0:71): Abe and Suga (1998); (Pr � 0:1): Rogers et al. (1989).
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near a shear-free surface (which corresponds to the poor pre-
dictive accuracy of A there). Therefore, further work is nec-
essary for improving the model of the A equation as well as the
heat ¯ux model in the core region. It is also necessary to val-
idate the present proposals in more complex ¯ow ®elds. (Al-
though a detailed discussion is currently underway, some
encouraging results have been obtained in a three-dimensional
duct ¯ow and a ¯ow around a blu� body. Those results will be
presented elsewhere.)
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Appendix A. The k and ~e equations

The transport equation for k is:

Dk
Dt
� mdkl

��
� 0:22ukul

k
e

�
k;l

�
;k

�Pk � Pk ÿ e; �A:1�

where

Pk � 1

2
0:35dk

ÿh � 0:77dA
k

�
meAA2k� �1=2 cpd1A2

n
� 0:4Rÿ1=4

t exp � ÿ Rt=40�
oi

;k
; �A:2�

cpd1 � 1� 2 exp�ÿRt=40�:
The transport equation for ~e is:

D~e
Dt
� mdkl

��
� 0:18ukul

k
e

�
~e;l

�
;k

� ce1Pk
~e
k
ÿ ce2

~e2

k
� Pe3

� Se1 � Se2; �A:3�
where

Pe3 � 1:3mmtUi;kjUi;kj � m
mt

k
k;kUi;lUi;kl; �A:4�

and the coe�cients are listed in Table 4. The additional term
Se1 is modi®ed from the term in the CL model which is de-
signed for a shear-free boundary.

Se1 � 1� ÿ A�~e�clAk�1=2A;k�lA1=2�;k : �A:5�
Another additional term is introduced to balance the viscous
di�usion.

Se2 � ÿ�eÿ ~e��~eÿ Pk�=k: �A:6�

Note that a further term composed of some length-scale gra-
dients as in the CLS model should be involved when applica-
tions for impinging ¯ows are considered.

Appendix B. Boundary limiting behaviour

In the case that U corresponds to the streamwise velocity
component, the analytical limiting behaviour of turbulent
quantities is:

near-wall

U; y / O�y0� : with shear;

U; y / O�y1� : without shear;

u;w / O�y�; v / O�y2�;
k; ~e; u2;w2 / O�y2�;
v2 / O�y4�; uv / O�y3�;
h / O�y� : constant wall temperature;

h / O�y0� : constant wall heat flux;

8>>>>>>>>>>><>>>>>>>>>>>:

free surface

U; y / O�y1�;
u;w / O�y0�; v / O�y�;
k; ~e; u2;w2 / O�y0�;
v2 / O�y2�; uv / O�y1�;
h / O�y0�;

8>>>>>><>>>>>>:
�B:1�

where y is the distance from the boundary. In two-dimensional
¯ow ®elds, after a moderate amount of algebra, the de®nition
of A reduces to

A � 27

8

w2

k3
u2 v2

�
ÿ uv2

�
; �B:2�

and thus its theoretical behaviour is A / O�y2� near both walls
and free surfaces.

Appendix C. Another set of coe�cients for the heat ¯ux
model

The presently proposed heat ¯ux model (Eqs. (20)±(23)) can
be also combined with the other nonlinear EVMs or second-
moment closures. In the case that the distribution of A is not
captured reasonably, the following set of modi®ed coe�cients
may be used instead of Eq. (32).

ch � 0:38

1ÿ exp�ÿRt=100�f g1=4
;

cr0 � 0;

cr1 � 0:2fb � 0:1fPr;

cr2 � 1ÿ fb ÿ fPr;

ca0 � 0;

ca1 � 1� ÿ fPr� ÿ0:5gAn

1� 5n2

(
ÿ 0:02

gA � n� 0:2� �2 exp
h
ÿ n=2:2� �2

i)
;

fb � �1ÿ fPr�2 exp�ÿ�n=2:2�2 ÿ �gA=0:3�2�;
fPr � 1

1� Pr=0:085� �1:5 ;

gA � 0:3 1
h
ÿ exp

n
ÿ �Rt=70�2

oi
;

n � S; �C:1�

Table 4

The coe�cients in the ~e equation

ce1 � 1:0� 0:15�1ÿ A1=2� ce2 � 1:92=�1� 0:7Ad A1=2
2 � Ad � max�0:2;A��Rt=20�2=f1� �Rt=20�2g
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where

s � ftk=e; ft � �1ÿ exp
n
ÿ �Rt=70�1=2

o
�ÿ1

and

S � s
���������������
SijSij=2

q
:

The predictive performance with this set is comparable to the
presented results using Eq. (32), though it is limited only in
wall shear ¯ow cases.
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